FANDOM


Exoplanetary Scratchpad

[SysBP Img]

A planetary class indicating any planet larger than a Neptunian orbiting closer than the Habitability Zone. This can include many other planets that aren't considered Hot Jupiters, such as eccentric planets or Warm Jupiters.

Hot Jovians Web PagesEdit

Hot Jovians In the NewsEdit

Sample (Year)Edit

Sample Hot Jovian SystemsEdit

First Discovered (Before 2000)Edit

  • HD 114762 System (1989) - Multiple star system containing the first discovered extrasolar planet, though not the first confirmed one. This planet was also called Latham's Planet. It could be a Brown Dwarf, though a Super Jupiter seems more likely.
  • 51 Pegasi System (1995) - The star called 51 Pegasus is now known as Helvetios. Contains the first exo-planet around a normal star discovered and the first "Hot Jupiter" found, which is nicknamed "Bellerophon", and now called Dimidium. Star is about 50 ly located in the square of Pegasus, a G5 star somewhat larger and more massive than the Sun. The planet's discovery was incompatible with planetary system formation models, so they were tweaked to allow for planetary migration. It was also initially thought to be an anomaly or the stripped down core of a brown dwarf. Found to have supersonic winds that caused the eternal night-side hemisphere to be as hot as the day-side one. During its 20th anniversary, this planet became the first one's whose reflected visible light was detected. The technique involved looking at a star's visible spectrum, and then detecting a faint reflection of this spectra. Its actual mass (0.46 MJ) and inclination (9deg) were obtained as a result. The planet seems to have a larger radius and bright surface, rather typical for hot jupiters. One of the first 20 exoplanet systems allowed to be given common names by the IAU. The star's name is Latin for a Celtic tribe that lived in Switzerland (the place where its planet was discovered) during the middle ages. The planet's name is Latin for "half" due to the fact its minimum mass is half as massive as Jupiter's.
  • 55 Cancri System (1996) - Copernicus is also known as Rho Cancri, 55 Cancri, Rho1 Cancri, HR 3522, Gl 324, and HD 75732. Wide binary star consisting of a sun-like primary (A, though super metal rich) and a red-dwarf secondary (B) separated by 1,100 AU, 41 light years away. Star A contains five exoplanets, the first system found with four or five planets. It has three tightly packed eccentric planets close in to the star, including planet Jannsen (e, hot Super Earth/Neptunian), Galileo (b, warm Jupiter), and Brahe (c, hot Saturn), followed by an eccentric Saturn in the habitable zone (Harriot, f) and a Jupiter analog, Lippershey (d). Planet e was heralded as the first Neptunian discovered. It was later found to be the shortest-period planet discovered (18 hours) and to transit. Its density was measured and determined to be rocky, and thus re-dubbed the first Super-Earth discovered. It was then the first super-Earth to have its light detected (by Spitzer in the infrared). The planet has about half of Neptune's mass, but is Earth-like in size and density (2.17 Earth Radius). Studies taking into account the composition of the star suggested that it was largely made of diamond, with graphite at the surface (the first diamond planet around a Sunlike star), and the first terrestrial found with fundamentally different surface composition and processes than Earth. This was later refuted when it turned out there wasn't as much carbon in the parent star as believed. Earlier studies that assumed an Earth-like composition suggested that it would be covered with an ocean of super-critical water. The brightness of the planet was found to have raised dramatically, possibly the aftermath of cloud cover due to a volcanic eruption. The brightness of the star (also closest known to transit and only known naked eye star to do so) makes it more easily studied than other hot super Earths. It was found to be dark and its sun-facing side hot enough to melt metal. It became the first super Earth to have its atmospheric composition measured (mostly hydrogen and helium with hints of hydrogen cyanide which would only dominate in a carbon-rich environment and no traces of water vapor) and temperature mapped, and the large hemispherical temperature differences suggest little atmosphere to transport heat. Planet b (one of the original 4 Hot Jupiters discovered) is the first "warm Jupiter" found to have a puffed up atmosphere and it probably at the outer limit from the star at which a planet can lose its atmosphere in this way. Its outer atmosphere skims the surface of the star, which was detected when attempting to detect an atmosphere around transiting Janssen. The strong interaction between planets Galileo and Brahe can be detected in measurements, and it took a while to find a fit that would allow them to survive over long periods of time. Harriot is a very eccentric Saturnian in the habitable zone. Planet d is a super jovian at Jupiter-like distances, which was the first found at true Jupiter distances and still the exoplanet discovered with dopplar spectrometry with the largest known semi-major axis. It was first thought to be circular, then eccentric, and then circular again. The distant outer star causes Lippershey's axis to flip on its axis every million years. Lippershey in turn causes the other planets to flip, including its star. The axis tilt of transiting planet e should be determined at some point. "Bode's law" predicts four undiscovered planets. One of the first 20 exoplanet systems allowed to be given common names by the IAU.
  • 70 Virginis System (1996) - The second normal star found to have planets, which is the first Eccentric Giant discovered and the first discovered by the Carnegie team. Planet nicknamed "Goldilocks" because it was perceived as the first planet discovered in its star's Habitability Zone. It was found to be much further away from Earth than initially believed and the star thus brighter, so the planet is now known to be too hot to have habitable moons.
  • Tau Bootis System (1996) - Contains one of the first four discovered Hot Jupiters, which was one of the largest, hottest, closest in (P = 3.3d, a = 0.05) of the earlier discovered ones and the closest known at the time and is today one of the brightest planets known. It was immediately recognized to have tidally locked its star's rotation period. The star (also known as HR 5185) is nearby (50 ly), 1.5 times as massive as the sun. The planet does not transit its star, but is one of the brightest planets known. Several attempts to detect light were declared, but then refuted. In one such attempt by British astronomers, it was nicknamed the "Millenium Planet", and light was thought to have been detected (thought to be a first) by subtracting its star's light, giving an inclination of 29deg, mass of 8 MJ, and size of 1.8 RJ, and blue-green color. NASA's Spitzers later was thought to have detected it (again, a believed first, considering visually detected ones were planetary "candidates"). It was finally detected later by observing CO lines produced by reflected light through its atmosphere, yielding a mass of 6 MJ and inclination of 44F. Water was later also detected in its atmosphere in the near infra-red, the first for any non-transiting exo-planet. The temperature was unexpectedly found to be cooler at the upper levels, unlike many other hot Jupiters (strong ultraviolet radiation are thought to destroy the compounds responsible for creating thermal inversions in this case). The star was the first to have its magnetosphere detected (which envelopes the planet) and also the first known to magnetically flip like the Sun (flips once every Earth year, vs the Sun's 11 years). One of the first 20 exoplanet systems allowed to be given common names by the IAU, but the only one whose chosen name was rejected because it did not conform to IAU's naming standards.
  • Upsilon Andromedae System (1996) - Titawin (Upsilon Andromeadae) is a nearby (44 ly) multi-star system which is the first multiplanet system found around a main sequence star or a multi-star system. The main star around which the planets orbit is a yellow-white star somewhat younger than the sun and its companion is a red dwarf in a wide orbit. It is one of the most well studied non-transiting star systems. Roaster Saffar (b, 0.05 au, 0.62 MJ, e=0.013, and the nearest true Hot Jupiter to Earth) is nicknamed the Fire and Ice Planet because it is hot on one side and cold on the other. The hottest parts of the planet are near the trailing side terminator at the equator, due to high velocity winds transporting heat to the night side. This is 80deg offset from the starward pole and a much greater offset than other observed hot Jupiters. This threw astronomers off and caused them to doubt the wind-theory, though later observations of other planets have shown that winds indeed can travel fast enough to cause this. Stability studies and observations suggest its diameter is 1.8 DJ, rather large for a planet its age. The middle planets Samh (c, 0.83 au, 1.8 MJ, initially thought to possibly be a brown dwarf star, e=0.224) and Majriti (d, 2.5 au, 10.2 MJ, e=0.26) have had their inclinations and masses determined with astrometry, the first determination of relative inclinations of exoplanets. They are very eccentric and highly inclined to each other (30 deg). Planet scattering was thought to be a source until the outermost planet was discovered. This is planet e (5.2 au, 1.05 MJ, e = 0.005), which is the most Jupiter-like exoplanet known, and is in 3:1 resonance with planet d. Planet c is in the habitable zone, though any habitable moons would see drastic temperature swings. The star appears to have no Kuiper-belt like disc, perhaps due to its companion star sweeping away this material. One of the first 20 exoplanet systems allowed to be given common names by the IAU. The star is named after an important city in Morocco that bridged the Spanish and Arab worlds. The planets are named after famous Andalusian astronomers.
  • HD 168443 System (1998) - Contains the first planet discovered whose minimum mass was near the planet/brown dwarf boundary which orbits at a asteroid belt-like distance. Also contains a second huge planet at least 7 times as massive as Jupiter orbiting at Mercury-like distances.
  • HD 187123 System (1998) - Solar twin system containing one of the earlier discovered Hot Jupiters (similar to 51 Peg b) and that had early indications of an outer planet. The confirmation of this massive distant eccentric jovian was announced at the May 2007 AAS media briefing, along with 27 other exoplanets. No transits have been detected for this planet.
  • Epsilon Eridani System (1998) - Ran (Epsilon Eridani) is the nearest single non-red dwarf star to the Sun, also known as HD 195019, Gl 144, and HR 1084. It is a member of the Ursa Major star association and close encounters to other stars is relatively common. One of the first stars found to have a dust disk, with several potential planets suspected in the gaps early on, and later on of the earliest nearest system with confirmed planets. Has an inner asteroid belt at 3 AU, Jovian planet AEger at 3.4 AU, outer asteroid belt at 20 AU, and Kuiper Belt at 35-100 AU. A planet is proposed to be just outside the outer asteroid belt, and another just before the Kuiper belt.Because the star is very chromospherically active, doubts were cast on planet's b's existence. Hubble then confirmed its existence with astrometrics and found to be orbiting in the plane of the dust disks, which supported the theory that planets are born from dust disks and yielded a precise mass of 1.5 MJ. The planet b was originally thought to be extremely eccentric (2-10 AU), but later discovery of the inner asteroid belt suggests it is more moderately eccentric so as not to cross the belt. It could still have high eccentricity if the outer belt was being fed with material from the outer belt though. Dinosaur-killing sized impacts would be frequent on any Earth-like planets, about once every 2 million years. One of 5 PICTURE-C targets selected for sub-orbital coronograph observation. One of the first 20 exoplanet systems allowed to be given common names by the IAU. Star is named after a Norse goddess of the seas, while the planet after her husband, god of the ocean. A common sci fi system, including the original home of Star Trek Vulcans (though this moved to 40 Eridani) and Babylon 5.
  • HD 217107 System (1998) - Contains the first discovered moderately eccentric Hot Jupiter. Its outer planet was suspected when the inner one was discovered due to its eccentricity (0.13) and confirmed with four other new multiplanet systems in 2005. The Outer planet c is highly eccentric and skirts the outer edge of the habitable zone.
  • HD 130322 System (1999) - A cloudless blue jovian around an orange dwarf star discovered by the Coralie survey. Called a Hot Jupiter by its discoverers due to its low orbital period, it could also be thought of as a Warm Jupiter due to its relatively cooler temperature.
  • 23 Librae System (1999) - Near naked-eye star containing two planets, also known as HD 134987. The first is an eccentric giant at Venus-like distances and one of the first exoplanets discovered (1999). The second is a Jupiter analog (a = 5.8 AU, q = 5.3 AU, Q = 6.3 AU, e = 0.12, P = 14 EY, m = 0.8 MJ) discovered ten years later, indicating that enough time has passed to detect Jupiter-like planets.
  • HD 177830 System (1999) - System with an early found Hot Jovian in it.
  • HD 192263 System (1999) - An early detected cloudless blue Jovian around an orange dwarf star.
  • HD 209458 System (1999) - Has first discovered transiting planet which was nicknamed Osiris due to the (first detected) comet-like tail detected and the first exoplanet around a normal star to have its mass directly measured. Also the first Inflated Hot Jupiter found. The planet may be losing its outer atmosphere, or magnetism may prevent the ions from escaping. They detected water in its atmosphere (they had failed earlier), the first time this has been done for any exoplanet. 2nd Exoplanet with detected organic compounds; like HD 189733b, it has water and carbon dioxide, but it has a lot more Methane. Was one of 2 planets to have light directly taken and thus their temperatures read (over 1000K). Tracking carbon molecules with dopplar spectrometry caused it to be the first exoplanet detected to have winds, which are raging at 5,000 to 10,000 km/h. This is believed to cause hotspots to appear at terminators rather than at the star-ward facing point. Had one of the strongest water detection of the 5 exoplanets contrasted by Hubble in 2013, though still less intense than expected, probably due to dust clouds or a haze blocking its detection.
  • HD 75289 System (1999) - A nearby yellow dwarf star (94.4 ly) with a Red Dwarf about 620 AU. 0.4 Jupiter massed planet Ab was predicted to be a Cloudy Hot Jupiter by Extrasolar Visions website, which have bright silicate clouds above its dark sodium haze. However, by studying its star's light, it has been concluded that the planet must have a very low albedo for a Hot Jupiter, otherwise the planet's reflected light would have been detected. Star B would only appear as bright as Saturn does from the planet.
  • Iota Horologii System (1999) - Iota Horologii is a bright yellow dwarf star, also known as HR 810. Contains the first planet discovered with an ESA instrument. This is an Eccentric Jupiter (over twice Jupiter's mass) and orbits almost as far as the Earth does from the Sun. Because of the greater luminosity of its star (50% more than the Sun), this planet is also considered a Hot Jovian. Stability analysis indicates that Earth-sized trojan planets could exist around this planet's orbit. A dust disk was announced around this star in 2000, but was later retracted as being due to an instrument defect. Another planet was also proposed, but retracted. System has a low C/O ratio like the Solar System.

See AlsoEdit

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.