Andy's Wiki


1,625pages on
this wiki
Add New Page
Comments0 Share
Exoplanetary Scratchpad

[SysBP Img]

Neptunians are planets usually primarily composed of ices with thick atmospheres and no solid surface.

Red Dwarf NeptuniansEdit

  • Gliese 436 System - AC+27°28217 is best known as Gliese 436. The second known red dwarf planetary system. Contains one of the first Neptunians discovered and a few potential planets. The star is about half the sun's mass. It is over 11 Billion years old and may be a part of the old disk of the Milky Way. Planet b temporarily later found to be the smallest exoplanet (about Uranus' diameter, though over 50% its mass) known to transit its host star and is currently the nearest (33 ly). Its temperature (712K) was measured to be higher than what it would be purely from radiation (520K), perhaps due to a greenhouse effect, somewhat higher than Venus. It was originally thought to have a layer of "hot ice", water solidified due to high pressures. It turned out that it was larger than thought and hot ice was not needed. It could still be a rocky super-Earth. It was later found to have a remarkably low levels of Methane and high levels of Carbon Monoxide for its 800K temperature. Possible explanations include Methane being changed into hydrocarbon polymers due to its star's ultraviolet radiation, CO being drafted upwards with winds, or observational defects. Later, due to lack of detection of chemical signatures through the backlit atmosphere, it was concluded that high altitude clouds, perhaps made of potassium chloride or zink sulphide dust, were blocking the detection. This could be the first detection of clouds of a Neptunian. An alternate theory is that the atmosphere is filled with heavy compounds, such as water, carbond dioxide, which would compress the atmosphere and make it difficult to detect. After detection of a huge comet-like tail of Hydrogen trailing and wrapping around its orbit led to the most recent theory that it lost its Hydrogen to uv radiation and was left with a Helium dominated atmosphere with plenty of CO instead of CH4. It's significant eccentricity suggests a possible neighboring planet. Planet c was announced to be the smallest known exoplanet (1.5 Earth's diameter), but was later retracted because variations in transit timing of the first planet did not occur and the proposed orbit would be unstable. It is still thought that a second planet of some kind is possible in the system. Candidate UCF-1.01 was detected by a student in the UCF's astronomy department using the Spitzer Space Telescope. It is about 2/3 Earth's diameter (smaller than all but one confirmed exoplanet), orbits around its star in 1.5 days, and at 1000F may be a lava world without an atmosphere. UCF-1.02 also may exist. Both are thought to be about 1/3 as massive as the Earth, but are too small to get their mass measured and thus too small to be confirmed with present technology.
  • Gliese 674 System - CD-46°11540 is most commonly known as Gliese 674 and informally Proxima Arae. It is the nearest red dwarf known to have a planet and was the second nearest known exoplanet to the Sun when discovered. The star is type M3 V and is about 35% as massive and 42% as wide as the Sun and believed to be 550 million years old. It was once classed as an orange dwarf and a possible sub-dwarf. It was discovered by John Tome at Cordoba in Argentina. The planet is a Hot Neptunian in a tight orbit that has a similar eccentricity as Mercury. It's about 70% the mass of Neptune and 12 times that of Earth. It is unclear what its nature would be. It orbits at 0.04 AU, which is closer than the habitable zone, which is 0.13 to 0.15 AU.
  • OGLE-2005-BLG-169L System - Contains the second discovered icy Super-Earth or Neptunian. This planet was detected via the Microlense technique.
  • Gliese 581 System - BD-11°3759 is better known as Gliese 581. Small nearby Red Dwarf with six planets in tight circular orbits. Several planets were announced in the habitable zone, but have since been retracted due to being due to sunspots rotating in view during it's 130 day rotation. E is the smallest known dopplar-detected exoplanet and a Super Mercury, b is a hot Neptunian, c is a super-Venus and the first detected in the HZ (initially heralded as habitable, but later thought too hot due to the greenhouse effect). G (1/4 stellar rotation) was the most controversial heralded as the first habitable Super-Earth and "Eyeball Earth", but was disproven. D (1/2 stellar rotation) was later thought to be an even more promising planet for life as it was big enough for a decent greenhouse effect even though it was at the outer edge of the habitable zone, was later thought to also not exist, but then its existence was re-affirmed. F was thought to be a cold super-Earth, but also disproven. The star is not very active. A massive Kuiper Belt was found, which may have been allowed to exist because the system lacks a Jovian class planet. A further out Neptunian may be responsible for the cometary collisions that produced the debris.

Other NeptuniansEdit

  • Mu Arae System - Cervantes (Mu Arae) is a 6th magnitude Sunlike star close to becoming a Sub-Giant located 50 ly with four known planets. At first believed to be a system dominated by orbit crossing eccentric Super Jupiters. Instead, three Jovians orbit in roughly circular orbits at Earth-like (Rocinante, d), Mars-like (Quixote, b, in habitable zone), and Jupiter-like (Sancho, e) distances in addition to an inner (Dulcinea, c) Hot Neptune. Planet c was one of three Hot Neptunes or Hot Super Earths discovered around the same time. It was the first one announced, but it was still under scientific review at the time, so there remains controversy on what the actual first planet discovered of this class is. Initially thought to likely to be rocky because it had 2 known neighboring gas giants which may have stunted its growth. The characteristics of the planets in this system changed greatly as new planets were discovered, and included a re-ordering of their designations. Initially, the first planet b was thought to be highly eccentric. An outer planet was then detected, at the time dubbed "c" (though a full period hadn't yet been observed), and was thought to have an extremely high eccentricity so that the orbits of the two planets would cross. An innermost third planet then dubbed "d" was then detected. A new fit for the data then emerged, and it was found that the outermost planet was actually much less eccentric, and that there was a planet interior to planet b with almost half its period. The eccentricity of b was also reduced so that no planet criss-crossed another's anymore. It was decided to redesignate the planets in order of characterizations instead of by discovery, so the innermost Neptunian planet was re-dubbed "c" and the planets just interior and exterior to planet "b" were re-dubbed "d" and "e". The system became the second known 4-planet system. The innermost two Jovians are close enough so that they're unstable over short periods of time. If they were actually in 1:2 resonance, which almost fits the data, they would be much more stable. One of the first 20 exoplanet systems allowed to be given common names by the IAU. Star is named after the author of Il Ingenioso Hildalgo Don Quixote de la Mancha and the planets after its characters, Quijote (main character), Dulcinea (love interest), Rocinante (horse), and Sancho (squire).
  • 55 Cancri System - Copernicus is also known as Rho Cancri, 55 Cancri, Rho1 Cancri, HR 3522, Gl 324, and HD 75732. Wide binary star consisting of a sun-like primary (A, though super metal rich) and a red-dwarf secondary (B) separated by 1,100 AU, 41 light years away. Star A contains five exoplanets, the first system found with four or five planets. It has three tightly packed eccentric planets close in to the star, including planet Jannsen (e, hot Super Earth/Neptunian), Galileo (b, warm Jupiter), and Brahe (c, hot Saturn), followed by an eccentric Saturn in the habitable zone (Harriot, f) and a Jupiter analog, Lippershey (d). Planet e was heralded as the first Neptunian discovered. It was later found to be the shortest-period planet discovered (18 hours) and to transit. Its density was measured and determined to be rocky, and thus re-dubbed the first Super-Earth discovered. It was then the first super-Earth to have its light detected (by Spitzer in the infrared). The planet has about half of Neptune's mass, but is Earth-like in size and density (2.17 Earth Radius). Studies taking into account the composition of the star suggested that it was largely made of diamond, with graphite at the surface (the first diamond planet around a Sunlike star), and the first terrestrial found with fundamentally different surface composition and processes than Earth. This was later refuted when it turned out there wasn't as much carbon in the parent star as believed. Earlier studies that assumed an Earth-like composition suggested that it would be covered with an ocean of super-critical water. The brightness of the planet was found to have raised dramatically, possibly the aftermath of cloud cover due to a volcanic eruption. The brightness of the star (also closest known to transit and only known naked eye star to do so) makes it more easily studied than other hot super Earths. It was found to be dark and its sun-facing side hot enough to melt metal. It became the first super Earth to have its atmospheric composition measured (mostly hydrogen and helium with hints of hydrogen cyanide which would only dominate in a carbon-rich environment and no traces of water vapor) and temperature mapped, and the large hemispherical temperature differences suggest little atmosphere to transport heat. Planet b (one of the original 4 Hot Jupiters discovered) is the first "warm Jupiter" found to have a puffed up atmosphere and it probably at the outer limit from the star at which a planet can lose its atmosphere in this way. Its outer atmosphere skims the surface of the star, which was detected when attempting to detect an atmosphere around transiting Janssen. The strong interaction between planets Galileo and Brahe can be detected in measurements, and it took a while to find a fit that would allow them to survive over long periods of time. Harriot is a very eccentric Saturnian in the habitable zone. Planet d is a super jovian at Jupiter-like distances, which was the first found at true Jupiter distances and still the exoplanet discovered with dopplar spectrometry with the largest known semi-major axis. It was first thought to be circular, then eccentric, and then circular again. The distant outer star causes Lippershey's axis to flip on its axis every million years. Lippershey in turn causes the other planets to flip, including its star. The axis tilt of transiting planet e should be determined at some point. "Bode's law" predicts four undiscovered planets. One of the first 20 exoplanet systems allowed to be given common names by the IAU.
  • Gliese 777 System - Outer planet of the primary star was initially believed to be a Jupiter analog, but later found to be eccentric (its apastron is at Jupiter-like distance). Its second planet was the fourth Neptunian discovered and was announced with four other "second" planets in 2005.
  • HD 69830 System - First planetary system found that does not have a Jupiter-sized planet around a normal star (K0 spectrum). Contains 3 Neptunians and the first discovered asteroid belt that is like the size and age as the Sun's. The debris from this belt that was detected was from the breakup of an asteroid, is 20 times as massive as our own, and would cause zodiacal lights 1000 times brighter than we see from Earth. The smallest and outermost planet may be a 10 ME super Earth, is within the habitable zone, and is an inner shepherd for the asteroid belt. Halo 3 features a fictitious moon around this planet.
  • HD 4308 System - Template:HD 4308 System
  • HD 219828 System - Template:HD 219828 System
  • Solar System - Home system of Earth, the only confirmed habitable planet. Also has three other terrestrials, two Jovians, two Neptunians, several rocky and icy Dwarf Planets, a asteroid belt, a kuiper belt, and an Oort cloud.

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.