Andy's Wiki

Red Dwarf Systems

1,625pages on
this wiki
Add New Page
Comments0 Share
Exoplanetary Scratchpad

[SysBP Img]

Red Dwarf SystemsEdit

Red Dwarves With PlanetsEdit

  • Gliese 876 System - Ross 780 is also known as Gl 876 and the flare star IL Aquarii. Very nearby quadruple planet system and the first Red Dwarf found to have planets. The innermost planet (d, Hot Superterran, rocky-water) was the first found rocky planet around a normal star (the first true Super-Earth, at epistellar distances). The outer three planets c (Warm Saturnian), b (Warm Jovian), and e (Cold Neptunian) are in 1:2:4 (30d/60d/120d) resonance (the exoplanet resonance and first triple-resonant planets discovered). The outermost planet has a Mercury-like orbit. Planet b is second discovered by ELODIE after 51 Peg b and the second to have its mass exactly measured and the first to have done so by astrometry.
  • Gliese 674 System - CD-46°11540 is most commonly known as Gliese 674 and informally Proxima Arae. It is the nearest red dwarf known to have a planet and was the second nearest known exoplanet to the Sun when discovered. The star is type M3 V and is about 35% as massive and 42% as wide as the Sun and believed to be 550 million years old. It was once classed as an orange dwarf and a possible sub-dwarf. It was discovered by John Tome at Cordoba in Argentina. The planet is a Hot Neptunian in a tight orbit that has a similar eccentricity as Mercury. It's about 70% the mass of Neptune and 12 times that of Earth. It is unclear what its nature would be. It orbits at 0.04 AU, which is closer than the habitable zone, which is 0.13 to 0.15 AU.
  • Gliese 581 System - BD-11°3759 is better known as Gliese 581. Small nearby Red Dwarf with six planets in tight circular orbits. Several planets were announced in the habitable zone, but have since been retracted due to being due to sunspots rotating in view during it's 130 day rotation. E is the smallest known dopplar-detected exoplanet and a Super Mercury, b is a hot Neptunian, c is a super-Venus and the first detected in the HZ (initially heralded as habitable, but later thought too hot due to the greenhouse effect). G (1/4 stellar rotation) was the most controversial heralded as the first habitable Super-Earth and "Eyeball Earth", but was disproven. D (1/2 stellar rotation) was later thought to be an even more promising planet for life as it was big enough for a decent greenhouse effect even though it was at the outer edge of the habitable zone, was later thought to also not exist, but then its existence was re-affirmed. F was thought to be a cold super-Earth, but also disproven. The star is not very active. A massive Kuiper Belt was found, which may have been allowed to exist because the system lacks a Jovian class planet. A further out Neptunian may be responsible for the cometary collisions that produced the debris.
  • Gliese 849 System - BD-05°5715 is best known as Gliese 849 and also known as LHS 517. Nearby red dwarf star system in Aquarius with a planet. Contains the first long period exoplanet found around a red dwarf star using dopplar spectrometry. Also only the second Jupiter mass planet around a star less massive than half the Sun. Also the first confirmed Jupiter-sized planet at Neptune-like temperatures. There is evidense for a second planet.
  • Gliese 436 System - AC+27°28217 is best known as Gliese 436. The second known red dwarf planetary system. Contains one of the first Neptunians discovered and a few potential planets. The star is about half the sun's mass. It is over 11 Billion years old and may be a part of the old disk of the Milky Way. Planet b temporarily later found to be the smallest exoplanet (about Uranus' diameter, though over 50% its mass) known to transit its host star and is currently the nearest (33 ly). Its temperature (712K) was measured to be higher than what it would be purely from radiation (520K), perhaps due to a greenhouse effect, somewhat higher than Venus. It was originally thought to have a layer of "hot ice", water solidified due to high pressures. It turned out that it was larger than thought and hot ice was not needed. It could still be a rocky super-Earth. It was later found to have a remarkably low levels of Methane and high levels of Carbon Monoxide for its 800K temperature. Possible explanations include Methane being changed into hydrocarbon polymers due to its star's ultraviolet radiation, CO being drafted upwards with winds, or observational defects. Later, due to lack of detection of chemical signatures through the backlit atmosphere, it was concluded that high altitude clouds, perhaps made of potassium chloride or zink sulphide dust, were blocking the detection. This could be the first detection of clouds of a Neptunian. An alternate theory is that the atmosphere is filled with heavy compounds, such as water, carbond dioxide, which would compress the atmosphere and make it difficult to detect. After detection of a huge comet-like tail of Hydrogen trailing and wrapping around its orbit led to the most recent theory that it lost its Hydrogen to uv radiation and was left with a Helium dominated atmosphere with plenty of CO instead of CH4. It's significant eccentricity suggests a possible neighboring planet. Planet c was announced to be the smallest known exoplanet (1.5 Earth's diameter), but was later retracted because variations in transit timing of the first planet did not occur and the proposed orbit would be unstable. It is still thought that a second planet of some kind is possible in the system. Candidate UCF-1.01 was detected by a student in the UCF's astronomy department using the Spitzer Space Telescope. It is about 2/3 Earth's diameter (smaller than all but one confirmed exoplanet), orbits around its star in 1.5 days, and at 1000F may be a lava world without an atmosphere. UCF-1.02 also may exist. Both are thought to be about 1/3 as massive as the Earth, but are too small to get their mass measured and thus too small to be confirmed with present technology.
  • OGLE-2005-BLG-390L System - Has first discovered Icy Super Earth, which was detected via Micro-lensing tens of thousands of light years away and was the smallest known exoplanet around a normal star at the time.
  • OGLE-2005-BLG-169L System - Contains the second discovered icy Super-Earth or Neptunian. This planet was detected via the Microlense technique.

Red Dwarves With DisksEdit

General StudiesEdit

Habitability Zones Extend Further than Previously Believed (Feb 2012)Edit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.