Fandom

Andy's Wiki

Systems by Type of Star

1,625pages on
this wiki
Add New Page
Comments0 Share
Exoplanetary Scratchpad

[SysBP Img]

Orange Dwarf SystemsEdit

  • HD 189733 System - A binary star in Velpulca (the "little fox") consisting of an Orange Dwarf star A and a Red Dwarf B (discovered shortly after planet Ab found and orbiting perpendicular to that planet's orbit and later detected in x-rays) orbiting 216 AU away. Planet Ab (the first nearby Very Hot Jupiter, originally thought to be inflated, is 13% larger and more massive than Jupiter) is the nearest transiting Hot Jupiter (62.9 ly). This is the first exoplanet to have its temperature mapped and was nicknamed Bull's Eye for its hot spot that is significantly offset from the starward pole. 5 years later, it later became the first world to have its thermal emissions mapped in both longtitude and latitude, confirming the hot spot was near the equator. Fast winds are thought to make the temperature of the eternal day and night sides nearly identical, which were later measured to be 2km/s when the planet became the first to have its wind and weather patterns mapped. It is also the first exoplanet for which scattered light in the upper atmosphere has been detected and the second exoplanet with water detected and first with Methane and then Carbon Dioxide detected. It later was the first exoplanet whose gasses were detected from Earth-based telescopes. It was also found to spin up its star and magnetically interact with it, causing stellar storms. Massive X-class solar flares blast off much of the planet's atmosphere and may render it undetectable. Hubble found that its atmosphere was a uniform blue haze. Blue was detected by determining which wavelengths were blocked during a transit. It was also found to rain molten glass, sideways, with 7000 km/hr winds and 1000C. It became the first exoplanet whose transit was detected in X-Rays, which revealed it had a very large extended outer atmosphere, which is losing material rapidly. The star is much more magnetically active for its age, possibly due to the planet's presence. There is speculation that it could have large planet-wide auroras. It's already-known mass was measured using an atmospheric pressure method to test its viability. By studying sodium spectra, it was determined that it gets hotter with altitude.

Yellow Dwarf SystemsEdit

Sunlike Stars (G1-G3)Edit

  • GSC 03549-02811 System - Contains TrES-2, which was the most massive nearby transiting planet until the discovery of Hat-P-2 b. It has a large radius for a planet not considered inflated. A large ground-based telescope method of observation was pioneered on this planet. Since its in Keplar's field of view, it was observed by it as a test subject and dubbed Kepler1b. A second planet is possibly responsible for fluctuations in the first's inclination. Kepler determined that it is the darkest known planet, blacker than coal, due to its extremely low dimming and brightening detected during transits. It would appear black except for some faint red tinge. This conflicts with current theories, which thought that a Hot Jupiter could only get as dark as Mercury. It appears that the planet is too hot for reflective clouds to form and instead its atmosphere contains light-absorbing chemicals. An off-the-cuff nickname Erebus (Greek god of darkness) has been suggested. It was also the first planet whose phases have been detected.

Cooler Yellow DwarfsEdit

  • 55 Cancri System - Copernicus is also known as Rho Cancri, 55 Cancri, Rho1 Cancri, HR 3522, Gl 324, and HD 75732. Wide binary star consisting of a sun-like primary (A, though super metal rich) and a red-dwarf secondary (B) separated by 1,100 AU, 41 light years away. Star A contains five exoplanets, the first system found with four or five planets. It has three tightly packed eccentric planets close in to the star, including planet Jannsen (e, hot Super Earth/Neptunian), Galileo (b, warm Jupiter), and Brahe (c, hot Saturn), followed by an eccentric Saturn in the habitable zone (Harriot, f) and a Jupiter analog, Lippershey (d). Planet e was heralded as the first Neptunian discovered. It was later found to be the shortest-period planet discovered (18 hours) and to transit. Its density was measured and determined to be rocky, and thus re-dubbed the first Super-Earth discovered. It was then the first super-Earth to have its light detected (by Spitzer in the infrared). The planet has about half of Neptune's mass, but is Earth-like in size and density (2.17 Earth Radius). Studies taking into account the composition of the star suggested that it was largely made of diamond, with graphite at the surface (the first diamond planet around a Sunlike star), and the first terrestrial found with fundamentally different surface composition and processes than Earth. This was later refuted when it turned out there wasn't as much carbon in the parent star as believed. Earlier studies that assumed an Earth-like composition suggested that it would be covered with an ocean of super-critical water. The brightness of the planet was found to have raised dramatically, possibly the aftermath of cloud cover due to a volcanic eruption. The brightness of the star (also closest known to transit and only known naked eye star to do so) makes it more easily studied than other hot super Earths. It was found to be dark and its sun-facing side hot enough to melt metal. It became the first super Earth to have its atmospheric composition measured (mostly hydrogen and helium with hints of hydrogen cyanide which would only dominate in a carbon-rich environment and no traces of water vapor) and temperature mapped, and the large hemispherical temperature differences suggest little atmosphere to transport heat. Planet b (one of the original 4 Hot Jupiters discovered) is the first "warm Jupiter" found to have a puffed up atmosphere and it probably at the outer limit from the star at which a planet can lose its atmosphere in this way. Its outer atmosphere skims the surface of the star, which was detected when attempting to detect an atmosphere around transiting Janssen. The strong interaction between planets Galileo and Brahe can be detected in measurements, and it took a while to find a fit that would allow them to survive over long periods of time. Harriot is a very eccentric Saturnian in the habitable zone. Planet d is a super jovian at Jupiter-like distances, which was the first found at true Jupiter distances and still the exoplanet discovered with dopplar spectrometry with the largest known semi-major axis. It was first thought to be circular, then eccentric, and then circular again. The distant outer star causes Lippershey's axis to flip on its axis every million years. Lippershey in turn causes the other planets to flip, including its star. The axis tilt of transiting planet e should be determined at some point. "Bode's law" predicts four undiscovered planets. One of the first 20 exoplanet systems allowed to be given common names by the IAU.


White Dwarf SystemsEdit

White Dwarfs With Planetary Matter in AtmospheresEdit

White dwarf stars have very pristine atmospheres. Contamination are easily observed and often the result of the star absorbing a planet during its red giant phase.
  • PG1225-079 System - White Dwarf that contains evidence of an absorbed dwarf planet. It contains magnesium, iron, and nickel in Earth-like ratios contaminates in its mostly Helium atmosphere. Some contaminants such as Calcium are two or three times greater than Earth.
  • HS2253+8023 System - White Dwarf with evidence that it has absorbed an Earth-like dwarf planet formed in about the same region that the Earth was formed. Contaminents are 85% oxygen, magnesium, silicon, and iron (very Earthlike).
  • NLTT 43806 System - White Dwarf with evidence of a planetary collision similar in scale to a Mars-like planet striking an Earth-like planet, similar to the collision thought to create the Moon. The star is unique in that it is the only white dwarf with very high Aluminum abundance and relatively low Iron abundance. Its theorized that Aluminum, common in the outer parts of a planet, was knocked off during the collision and got swallowed by the star, while the Iron core remained in tact. The collision would have occurred very recently 50 million years ago.

News

Could Support LifeEdit

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.