Fandom

Andy's Wiki

Wikipedia Systems

1,664pages on
this wiki
Add New Page
Comments0 Share
Exoplanetary Scratchpad

[SysBP Img]

This page lists systems appearing on Wikipedia. A "*" indicates a link to that page exists at Exoplanetary Wiki. A "!" indicates that there currently are no pages for that system or its planets on Wikipedia.

List of stars with confirmed extrasolar planetsEdit

http://en.wikipedia.org/wiki/List_of_stars_with_confirmed_extrasolar_planets

Normal starsEdit

  • HD 142 System - Multiple star system with a planet.
  • Gliese 3021 System - Multiple star system with a planet.
  • WASP-1 System - Has the first planet detected by the WASP program, which is the third "inflated" Hot Jupiter detected, which suggested these planets were fairly common. It was nicknamed "Garafía-1" after the municipality that hosts the Roque de Los Muchachos Observatory. Was the largest known exoplanet for about a year. Shows signs of atmospheric blow-off.
  • HD 2039 System - A planet around a yellow dwarf or yellow subgiant star almost 5 times as massive as Jupiter and in a very eccentric orbit.
  • HD 2638 System - A yellow dwarf star with a cloudless blue Jovian, a newly discovered star at 28 AU away, and another star gravitationally bound to it 0.7 ly away. The newly discovered star is close enough to the earlier discovered planet to influence its development.
  • 54 Piscium System - 54 Piscium is a nearby orange dwarf star also known as HR 166, Gl 27, Hip 3093, HD 3651. Has an eccentric planet about the mass of Saturn orbiting at Mercury-like distances. A recently discovered faint distant T type brown dwarf 476 AU away was found to be the cause of this eccentricity, which was directly imaged.
  • HD 4208 System - A white Water Cloud Jovian around an yellow dwarf star located beyond the habitability zone.
  • HD 4203 System! - Template:HD 4203 System
  • HD 5319 System! - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 6434 System - Template:HD 6434 System
  • HD 8574 System! - Template:HD 8574 System
  • Upsilon Andromedae System - Titawin (Upsilon Andromeadae) is a nearby (44 ly) multi-star system which is the first multiplanet system found around a main sequence star or a multi-star system. The main star around which the planets orbit is a yellow-white star somewhat younger than the sun and its companion is a red dwarf in a wide orbit. It is one of the most well studied non-transiting star systems. Roaster Saffar (b, 0.05 au, 0.62 MJ, e=0.013, and the nearest true Hot Jupiter to Earth) is nicknamed the Fire and Ice Planet because it is hot on one side and cold on the other. The hottest parts of the planet are near the trailing side terminator at the equator, due to high velocity winds transporting heat to the night side. This is 80deg offset from the starward pole and a much greater offset than other observed hot Jupiters. This threw astronomers off and caused them to doubt the wind-theory, though later observations of other planets have shown that winds indeed can travel fast enough to cause this. Stability studies and observations suggest its diameter is 1.8 DJ, rather large for a planet its age. The middle planets Samh (c, 0.83 au, 1.8 MJ, initially thought to possibly be a brown dwarf star, e=0.224) and Majriti (d, 2.5 au, 10.2 MJ, e=0.26) have had their inclinations and masses determined with astrometry, the first determination of relative inclinations of exoplanets. They are very eccentric and highly inclined to each other (30 deg). Planet scattering was thought to be a source until the outermost planet was discovered. This is planet e (5.2 au, 1.05 MJ, e = 0.005), which is the most Jupiter-like exoplanet known, and is in 3:1 resonance with planet d. Planet c is in the habitable zone, though any habitable moons would see drastic temperature swings. The star appears to have no Kuiper-belt like disc, perhaps due to its companion star sweeping away this material. One of the first 20 exoplanet systems allowed to be given common names by the IAU. The star is named after an important city in Morocco that bridged the Spanish and Arab worlds. The planets are named after famous Andalusian astronomers.
  • q1 Eridani System - A white Water Cloud Jovian around an yellow dwarf star straddling the outer edge of its habitability zone.
  • 109 Piscium System - A white Water Cloud Jovian around an yellow sub-giant star at near Earth-like temperatures.
  • HD 11506 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • Eta2 Hydri System - A planet around an intermediate-mass giant star. This provides indirect evidence for the existence of planetary systems around A-type stars.
  • HD 11964 System - Sunlike star with two eccentric gas giants detected in 2005. The outermost one was retracted but then re-confirmed as one of the 28 planets announced at the May 2007 AAS media briefing. The inner most has half the mass of Saturn and is too hot for clouds. The outer one is cool and likely dominated by white water clouds. A middle planet may also exist.
  • HD 12661 System - System with two Jovians that could support water clouds discovered in 2000 and 2002. The innermost one may be an "Eccentric Sulfurous Cloud Giant".
  • HD 13189 System! - Template:HD 13189 System
  • Gliese 86 System! - Contains the first exoplanet discovered by CORALIE of the Geneva southern extrasolar planet search programme. A cloudless blue heavy jupiter and a white dwarf around an orange star.
  • 79 Ceti System - A yellow subgiant star around which the smaller of the first 2 Saturnians discovered (HD 46375 b was the other one) is in a Mercury-like orbit.
  • Iota Horologii System - Iota Horologii is a bright yellow dwarf star, also known as HR 810. Contains the first planet discovered with an ESA instrument. This is an Eccentric Jupiter (over twice Jupiter's mass) and orbits almost as far as the Earth does from the Sun. Because of the greater luminosity of its star (50% more than the Sun), this planet is also considered a Hot Jovian. Stability analysis indicates that Earth-sized trojan planets could exist around this planet's orbit. A dust disk was announced around this star in 2000, but was later retracted as being due to an instrument defect. Another planet was also proposed, but retracted. System has a low C/O ratio like the Solar System.
  • HD 17092 System - A large Jovian in an "Earth-like" orbit (more eccentric though) around an orange giant star. Planet discovered by A. Niedzielski's team, the same one that discovered the first exoplanet.
  • HD 17156 System - Star system containing a planet discovered by dopplar spectrometry method and later found by amateurs to transit. At the time, it smashed the records for the furthest transiting planet (period of 21 d, 0.0523 to 0.26 AU) and most eccentric orbit. Its orbit was found to be well aligned with the rotation of its star. Its size has been measured better with the Hubble Telescope (3.8 MJ). A second, unconfirmed planet has also been proposed for this system.
  • HIP 14810 System - System with two eccentric planets discovered in 2006 by the Carnegie team. One is a moderately eccentric massive Hot Jupiter, while the other is a very eccentric half-Jupiter orbiting at Mercury-like distances.
  • 94 Ceti System - A yellow water cloud Jovian around a hot yellow dwarf star. Has a low C/O ratio like the solar system.
  • HD 20367 System - Template:HD 20367 System
  • HD 20782 System - Template:HD 20782 System
  • Epsilon Eridani System - Ran (Epsilon Eridani) is the nearest single non-red dwarf star to the Sun, also known as HD 195019, Gl 144, and HR 1084. It is a member of the Ursa Major star association and close encounters to other stars is relatively common. One of the first stars found to have a dust disk, with several potential planets suspected in the gaps early on, and later on of the earliest nearest system with confirmed planets. Has an inner asteroid belt at 3 AU, Jovian planet AEger at 3.4 AU, outer asteroid belt at 20 AU, and Kuiper Belt at 35-100 AU. There is evidence of additional planets between the belts. Because the star is very chromospherically active, doubts were cast on planet's b's existence. Hubble then confirmed its existence with astrometrics and found to be orbiting in the plane of the dust disks, which supported the theory that planets are born from dust disks and yielded a precise mass of 1.5 MJ. The planet b was originally thought to be extremely eccentric (2-10 AU), but later discovery of the inner asteroid belt suggests it is more moderately eccentric so as not to cross the belt. It could still have high eccentricity if the outer belt was being fed with material from the outer belt though. Dinosaur-killing sized impacts would be frequent on any Earth-like planets, about once every 2 million years. One of 5 PICTURE-C targets selected for sub-orbital coronograph observation. One of the first 20 exoplanet systems allowed to be given common names by the IAU. Star is named after a Norse goddess of the seas, while the planet after her husband, god of the ocean. A common sci fi system, including the original home of Star Trek Vulcans (though this moved to 40 Eridani) and Babylon 5.
  • HD 23127 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 23079 System! - A white Water Cloud Jovian around an yellow dwarf star at the outer edge of the habitability zone.
  • HD 23596 System! - Template:HD 23596 System
  • Epsilon Reticuli System - A cloudless blue jovian around an orange sub-giant star. This was the first exoplanet discovered beyond 0.2 AU that had a circular orbit.
  • HD 27894 System - A cloudless blue jovian around an orange dwarf star.
  • HD 28185 System - Contains the first exoplanet discovered in a circular orbit within its star's habitability zone. A white Water Cloud Jovian around an yellow dwarf star at near Earth-like temperatures.
  • Epsilon Tauri System - The brightest star in the Hyades star cluster. It is a super-Jovian around an orange giant star. This is the first planet discovered in an open star cluster.
  • HD 30177 System! - An eccentric ammonia cloud jovian orbiting 2.7 to 5.0 AU from a yellow dwarf star.
  • HD 33283 System! - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 33564 System! - Template:HD 33564 System
  • HD 37124 System - The fourth triple planet system discovered around a normal star, the last one announced with 4 other multiplanet components in 2005. A Sunlike star with Jovian planets that received Venus-like, Mars-like, and Asteroid Belt-like radition from their stars. Simulations showed that no terrestrial planets could form between the Venus-like and Mars-like Jovian planets.
  • Pi Mensae System - Very eccentric jovian around a yellow giant star.
  • HD 37605 System! - Contains the first exoplanet discovered by the Hobby-Eberly Telescope (HET), which was the third most eccentric planet found, ranging from Hot Jupiter distance to Mercury-like distance.
  • HD 38529 System - Subgiant star with a cloudy Hot Jupiter, Brown Dwarf, and Red Dwarf companion. Simulations showed that Earth-sized planet could exist between the planet and brown dwarf, but that an asteroid belt can be expected there instead.
  • HD 41004 System! - Template:HD 41004 System
  • HD 40979 System - Multiple star system with a planet.
  • AB Pictoris System - Contains one of the first exoplanets directly imaged. The young planet is just under the Brown Dwarf threshold in mass and was observed 275 AU from its orange dwarf host star.
  • HD 45350 System - Contains a highly eccentric planet which was recently studied to determine what other planets could exist in the system.
  • HD 46375 System - An orange subgiant around which the larger of the first two Saturnians discovered (79 Ceti b was the other one) orbits, which was the first "Epistellar Saturn" discovered.
  • HD 47536 System - Very large orange giant star with two large eccentric jovian discovered by the European-Brazilian team. The inner planet is at Earth-like distance, but is too hot for clouds to appear.
  • HD 47536 System - Very large orange giant star with two large eccentric jovian discovered by the European-Brazilian team. The inner planet is at Earth-like distance, but is too hot for clouds to appear.
  • HD 49674 System - Contains the first planet found to have significantly less mass than Saturn.
  • HD 50499 System! - Star system with a cold eccentric water-cloud jovian and an unconfirmed outer planet which was discussed when the Carnegie team announced 5 new multiplanet system components in 2005.
  • HD 50554 System! - One of the six extrasolar systems known to have planets to be first shown to also have a dust disk by Spitzer.
  • Corot-exo-1 System -
  1. REDIRECT Corot-exo-1 System
  • HD 52265 System - Sunlike star 90 ly away in Monoceros with a planet. Star is 1.2 the Sun's radius, 1.3 its mass, and 2.5 BY old. The star is an ideal object of study for the interactions between stars and planets. One of the six extrasolar systems known to have planets to be first shown to also have a dust disk by Spitzer. Planet independently discovered by CORALIE and Carnegie teams and is at least a 1.09 MJ Jovian in a hot eccentric orbit. By analyzing sonic vibrations, oscillations in brightness, through astroseismology, the exact internal spin rate (12 days) and orientation of the star has been computed. Assuming the planet orbits along the star's equator, it's mass can be inferred to be 1.85 Jupiter's, calming some suspicions that it may be a brown dwarf.
  • HD 59686 System - A cloudless blue jovian around an orange giant star.
  • HD 63454 System - A dark Hot Jupiter around an orange dwarf star.
  • Pollux System - Pollux is also known as Beta Geminorum, HR 2990, HD 62509, and Gl 286. It was originally called Polydeuces by the Greeks, after the immortal twin. The brightest star in Geminorum, which suggests it may have used to be the second brightest four centuries ago, and is the 17th brightest star in the sky. It is an orange-red giant star (K0 III) 1.7 times the Sun's mass and 8.8 its diameter and 724 MYO. It is the nearest (34 ly) giant star to the Sun. Its spectra has been used as a stable anchor point since 1943. It has one of the weakest measured magnetic field of any star. Planet Thestias was confirmed in 2006 that was first suspected in 1993. It orbits 1.64 AU in a circular path and is at least 2.3 times as massive as Jupiter. This is much nearer than the present habitable zone, which is centered at 5.7 AU. This is the brightest star in the sky known to have a planet. One of the first 20 exoplanet systems allowed to be given common names by the IAU. Named after the mother of Pollux, Leda. However, Leda is already taken as a moon of Jupiter, so a name derived from her father is used, which is sometimes used to refer to her or her sister..
  • XO-2 System! - Contains a transiting planet. The planet is a little more than half Jupiter's mass, but is inflated to just above its radius. It was the first planet found to have Potassium detected, which is an element long thought to a dominant source for opacity in hot Jupiters.
  • HD 65216 System - Jovian around a sun-like star.
  • HD 66428 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 68988 System! - A dark Hot Jupiter around an yellow dwarf star.
  • HD 69830 System - First planetary system found that does not have a Jupiter-sized planet around a normal star (K0 spectrum). Contains 3 Neptunians and the first discovered asteroid belt that is like the size and age as the Sun's. The debris from this belt that was detected was from the breakup of an asteroid, is 20 times as massive as our own, and would cause zodiacal lights 1000 times brighter than we see from Earth. The smallest and outermost planet may be a 10 ME super Earth, is within the habitable zone, and is an inner shepherd for the asteroid belt. Halo 3 features a fictitious moon around this planet.
  • HD 70642 System - First Jupiter analog discovered in a system with no giant planets further in, making it the closest solar system analog. Planet is 3.3 AU from an aging yellow dwarf star 90 light years away.
  • HD 70573 System - The youngest known star system with a planet.
  • HD 72659 System! - A white Water Cloud Jovian around an yellow dwarf star located beyond the habitability zone.
  • HD 73256 System! - A dark Hot Jupiter around an yellow dwarf star.
  • HD 73526 System - System with two large orbit-crossing Jovians locked in 1:2 resonance that would span the inner solar system to the asteroid belt. The second planet was one of the 28 planets announced at the May 2007 AAS media briefing.
  • 4 Ursae Majoris System - Template:4 Ursae Majoris System
  • HD 74156 System - Sunlike star with two planets more massive than Jupiter, one in about Mercury's position, and one at an Asteroid Belt-like position. A planet was predicted in between these two at Earth-like distances and later found, the first vindicated prediction since Neptune. This supports the "Packed Planetary Systems" theory. Some have suggested that it's one Earth year orbit period may mean its detection is due to Earth based observation errors.
  • HD 74156 System - Sunlike star with two planets more massive than Jupiter, one in about Mercury's position, and one at an Asteroid Belt-like position. A planet was predicted in between these two at Earth-like distances and later found, the first vindicated prediction since Neptune. This supports the "Packed Planetary Systems" theory. Some have suggested that it's one Earth year orbit period may mean its detection is due to Earth based observation errors.
  • HD 75289 System - A cloudy Hot Jupiter around an yellow dwarf star.
  • 55 Cancri System - Copernicus is also known as Rho Cancri, 55 Cancri, Rho1 Cancri, HR 3522, Gl 324, and HD 75732. Wide binary star consisting of a sun-like primary (A, though super metal rich) and a red-dwarf secondary (B) separated by 1,100 AU, 41 light years away. Star A contains five exoplanets, the first system found with four or five planets. It has three tightly packed eccentric planets close in to the star, including planet Jannsen (e, hot Super Earth/Neptunian), Galileo (b, warm Jupiter), and Brahe (c, hot Saturn), followed by an eccentric Saturn in the habitable zone (Harriot, f) and a Jupiter analog, Lippershey (d). Planet e was heralded as the first Neptunian discovered. It was later found to be the shortest-period planet discovered (18 hours) and to transit. Its density was measured and determined to be rocky, and thus re-dubbed the first Super-Earth discovered. It was then the first super-Earth to have its light detected (by Spitzer in the infrared). The planet has about half of Neptune's mass, but is Earth-like in size and density (2.17 Earth Radius). Studies taking into account the composition of the star suggested that it was largely made of diamond, with graphite at the surface (the first diamond planet around a Sunlike star), and the first terrestrial found with fundamentally different surface composition and processes than Earth. This was later refuted when it turned out there wasn't as much carbon in the parent star as believed. Earlier studies that assumed an Earth-like composition suggested that it would be covered with an ocean of super-critical water. The brightness of the planet was found to have raised dramatically, possibly the aftermath of cloud cover due to a volcanic eruption. The brightness of the star (also closest known to transit and only known naked eye star to do so) makes it more easily studied than other hot super Earths. It was found to be dark and its sun-facing side hot enough to melt metal. It became the first super Earth to have its atmospheric composition measured (mostly hydrogen and helium with hints of hydrogen cyanide which would only dominate in a carbon-rich environment and no traces of water vapor) and temperature mapped, and the large hemispherical temperature differences suggest little atmosphere to transport heat. Planet b (one of the original 4 Hot Jupiters discovered) is the first "warm Jupiter" found to have a puffed up atmosphere and it probably at the outer limit from the star at which a planet can lose its atmosphere in this way. Its outer atmosphere skims the surface of the star, which was detected when attempting to detect an atmosphere around transiting Janssen. The strong interaction between planets Galileo and Brahe can be detected in measurements, and it took a while to find a fit that would allow them to survive over long periods of time. Harriot is a very eccentric Saturnian in the habitable zone. Planet d is a super jovian at Jupiter-like distances, which was the first found at true Jupiter distances and still the exoplanet discovered with dopplar spectrometry with the largest known semi-major axis. It was first thought to be circular, then eccentric, and then circular again. The distant outer star causes Lippershey's axis to flip on its axis every million years. Lippershey in turn causes the other planets to flip, including its star. The axis tilt of transiting planet e should be determined at some point. "Bode's law" predicts four undiscovered planets. One of the first 20 exoplanet systems allowed to be given common names by the IAU.
  • HD 75898 System! - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 76700 System - A cloudy Hot Jupiter around an yellow dwarf star.
  • HD 80606 System - Multiple star system (also known as Struve 1341) with a planet, which had a higher period (111 days) than any other known transiting planet and highest eccentricty (Halley's comet-like, epistellar distances to almost Earth-like distance) prior to the release of Kepler data. It is the nearest transiting Super Jupiter (4 MJ, radius slightly less than 1 RJ, 190ly). Its length of day is 36 hours. Discovered in 2001, but found to transit in 2009. Planet is the first one for which changes in weather have been observed. Potassium was detected from the high wind regions of the exosphere. In 2010 it was found to be only one of the two out of all 79 known transiting exoplanetary systems that could not support a habitable Earth-like planet, since its elongated orbit would destabilize any such planets. Planet thought to be in the process of becoming a Hot Jupiter. Observations suggested that energy transferred during closest approach to star would take 10 Billion Years to cause the orbit to circularize, meaning this tidal migration method may not be the preferred one to form hot jupiters.
  • HD 81040 System - Template:HD 81040 System
  • HD 82943 System - Yellow dwarf with two large orbit-crossing Jovians locked in 1:2 orbital resonance that would span the inner solar system, which were disccovered by the Swiss team by 2001. The planets have nearly identical mass (1.8 MJ). Shown to have a dust disk by Spitzer.
  • HD 83443 System - A cloudy Hot Jupiter around an orange dwarf star.
  • HD 86081 System! - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 88133 System - A cloudy Hot Jupiter around an yellow sub-giant star.
  • HD 89307 System! - A moderately eccentric ammonia cloud jovian around a yellow dwarf star.
  • HD 89744 System - Contains a highly eccentric planet which was recently studied to determine what other planets could exist in the system.
  • HD 92788 System! - Template:HD 92788 System
  • HD 93083 System - A yellow Water Cloud Jovian around an orange dwarf star.
  • OGLE-TR-132 System - Has the third discovered Very Hot Jupiter, validating the believability of the first one found. Transit timing analysis showed no variation, placing limits on further out planets.
  • OGLE-TR-113 System! - A binary orange dwarf star 1800 ly away in a crowded star field in Carina. It contains the second discovered Very Hot Jupiter (34 hours, 0.023 au, 1.3 MJ) and one of the first discovered transiting planets. At one time it was the only known transiting Hot Jupiter with a surface gravity greater than Jupiter's. Between 2002 and 2009, its transit times were found to shorten by 60 ms per earth year. This indicates that it is slowly spiraling towards its sun, the first exoplanet found to be doing this, and may get ripped apart by its star in 1.4 million years, when its period is reduced to 10.8 hours. An alternate explanation may be that an unseen planetary companion is causing the timing differences.
  • OGLE-TR-111 System - A yellow dwarf with a Hot Jupiter about half Jupiter's mass. Has the first OGLE-detected transiting "normal" Hot Jupiter (the others had unusually short periods). Data suggests the presence of a second planet, which, if confirmed, would make this the first system with more than one transiting planet.
  • BD−10°3166 System - Template:BD−10°3166 System
  • 47 Ursae Majoris System - Chalawan (aka 47 Ursae Majoris) is solar analog (G1 V, about the same age as the Sun) with 3 planets 46 ly away. One of earliest systems discovered. Taphao Thong (b, 2.5 MJ, 2.1 AU) and Taphao Kaew (c, 0.5 MJ, 3.6 AU) are in circular orbits at asteroid-belt like distances, while planet d (1.6 MJ, 11.6 AU) is in a distant more eccentric orbit (0.16, 9.6-13 AU). Planet b was the first found to have a circular orbit beyond the habitable zone. The discovery of planet c made the system the first multiplanet system whose planets have circular orbits, and b and c are rough Jupiter-Saturn analogs in relative size and positions. Their existence was in doubt until planet d was discovered. Planet d has not yet completed a full year (38.4 years) yet since its discovery (it cannot be named yet), but is the furthest out planet discovered with the dopplar spectrometry method. Studies have shown a terrestrial planet could only form in the innermost part of the habitable zone. Several transmissions have been sent to the star system. One of the first 20 exoplanet systems allowed to be given common names by the IAU. Star named after a Thai crocodile asterism and its planets are associated with two sisters associated with this legend. Taphao Thong was captured by the crocodile, while her sister Taphao Kaew married the one who rescued her.
  • HD 99109 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • 83 Leonis System - Multiple star system with a planet.
  • HD 100777 System! - Template:HD 100777 System
  • Gliese 436 System - AC+27°28217 is best known as Gliese 436. The second known red dwarf planetary system. Contains one of the first Neptunians discovered and a few potential planets. The star is about half the sun's mass. It is over 11 Billion years old and may be a part of the old disk of the Milky Way. Planet b temporarily later found to be the smallest exoplanet (about Uranus' diameter, though over 50% its mass) known to transit its host star and is currently the nearest (33 ly). Its temperature (712K) was measured to be higher than what it would be purely from radiation (520K), perhaps due to a greenhouse effect, somewhat higher than Venus. It was originally thought to have a layer of "hot ice", water solidified due to high pressures. It turned out that it was larger than thought and hot ice was not needed. It could still be a rocky super-Earth. It was later found to have a remarkably low levels of Methane and high levels of Carbon Monoxide for its 800K temperature. Possible explanations include Methane being changed into hydrocarbon polymers due to its star's ultraviolet radiation, CO being drafted upwards with winds, or observational defects. Later, due to lack of detection of chemical signatures through the backlit atmosphere, it was concluded that high altitude clouds, perhaps made of potassium chloride or zink sulphide dust, were blocking the detection. This could be the first detection of clouds of a Neptunian. An alternate theory is that the atmosphere is filled with heavy compounds, such as water, carbond dioxide, which would compress the atmosphere and make it difficult to detect. After detection of a huge comet-like tail of Hydrogen trailing and wrapping around its orbit led to the most recent theory that it lost its Hydrogen to uv radiation and was left with a Helium dominated atmosphere with plenty of CO instead of CH4. It's significant eccentricity suggests a possible neighboring planet. Planet c was announced to be the smallest known exoplanet (1.5 Earth's diameter), but was later retracted because variations in transit timing of the first planet did not occur and the proposed orbit would be unstable. It is still thought that a second planet of some kind is possible in the system. Candidate UCF-1.01 was detected by a student in the UCF's astronomy department using the Spitzer Space Telescope. It is about 2/3 Earth's diameter (smaller than all but one confirmed exoplanet), orbits around its star in 1.5 days, and at 1000F may be a lava world without an atmosphere. UCF-1.02 also may exist. Both are thought to be about 1/3 as massive as the Earth, but are too small to get their mass measured and thus too small to be confirmed with present technology.
  • HD 101930 System - A cloudless blue jovian around an orange dwarf star.
  • HD 102117 System - A cloudless blue jovian around an yellow dwarf star.
  • HD 102195 System - Template:HD 102195 System
  • HD 104985 System! - A cloudless blue jovian around an yellow giant star.
  • HD 106252 System! - Template:HD 106252 System
  • HD 107148 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 108147 System - Template:HD 108147 System
  • HD 108874 System - System with two Jovians that could have bands of white water clouds. The inner planet is in a circular orbit and enjoy's Earth-like heat. Its second planet, which was announced with four other new multiplanet systems in 2005, is in an eccentric orbit that would span our solar system's inner asteroid belt.
  • HD 109749 System! - Multiple star system with a planet.
  • HD 111232 System! - A white Water Cloud Jovian around an yellow dwarf star located beyond the habitability zone.
  • HD 114386 System - Template:HD 114386 System
  • HD 114762 System - Multiple star system containing the first discovered extrasolar planet, though not the first confirmed one. This planet was also called Latham's Planet. It could be a Brown Dwarf, though a Super Jupiter seems more likely.
  • HD 114783 System - A white Water Cloud Jovian around an orange dwarf star located beyond the habitability zone.
  • HD 114729 System - Multiple star system with a planet.
  • 70 Virginis System -
  • HD 117207 System! - A jupiter analogue 3.8 AU from a yellow dwarf star.
  • HD 117618 System - Template:HD 117618 System
  • HD 118203 System! - Template:HD 118203 System
  • Tau Boötis System - Template:Tau Boötis System
  • HD 121504 System - A cloudless blue jovian around an yellow dwarf star.
  • HD 122430 System! - Template:HD 122430 System
  • HD 125612 System - Template:HD 125612 System
  • HD 128311 System - An orange dwarf star with two jovians (a Jupiter analog detected in 2005 and an eccentric giant in the outer habitable zone) possibly in 1:2 resonance and a dusk disk detected by Spitzer.
  • XO-3 System - Planet is the first transiting object with mass on the borderline between being a planet and a Brown Dwarf. The largest known planet in a torch orbit at time of its discovery. Found to be inclined to its star 37degrees, while every other torch planet aligns with their star's equator. Heat received from star varies three-fold due to its eccentricity. Larger than models predict. Has a temperature inversion in its stratosphere.
  • HD 130322 System - A cloudless blue jovian around an orange dwarf star discovered by the Coralie survey. Called a Hot Jupiter by its discoverers due to its low orbital period, it could also be thought of as a Warm Jupiter due to its relatively cooler temperature.
  • 23 Librae System - Near naked-eye star containing two planets, also known as HD 134987. The first is an eccentric giant at Venus-like distances and one of the first exoplanets discovered (1999). The second is a Jupiter analog (a = 5.8 AU, q = 5.3 AU, Q = 6.3 AU, e = 0.12, P = 14 EY, m = 0.8 MJ) discovered ten years later, indicating that enough time has passed to detect Jupiter-like planets.
  • HD 136118 System - Has a Brown Dwarf that was originally thought to be one of the first discovered exoplanets discovered in 2002 and had been for 7 years.
  • Gliese 581 System - BD-11°3759 is better known as Gliese 581. Small nearby Red Dwarf with six planets in tight circular orbits. Several planets were announced in the habitable zone, but have since been retracted due to being due to sunspots rotating in view during it's 130 day rotation. E is the smallest known dopplar-detected exoplanet and a Super Mercury, b is a hot Neptunian, c is a super-Venus and the first detected in the HZ (initially heralded as habitable, but later thought too hot due to the greenhouse effect). G (1/4 stellar rotation) was the most controversial heralded as the first habitable Super-Earth and "Eyeball Earth", but was disproven. D (1/2 stellar rotation) was later thought to be an even more promising planet for life as it was big enough for a decent greenhouse effect even though it was at the outer edge of the habitable zone, was later thought to also not exist, but then its existence was re-affirmed. F was thought to be a cold super-Earth, but also disproven. The star is not very active. A massive Kuiper Belt was found, which may have been allowed to exist because the system lacks a Jovian class planet. A further out Neptunian may be responsible for the cometary collisions that produced the debris.
  • Iota Draconis System - (aka Edasich) A magnitude 3.1 orange-red giant star 101 ly away also known as Iota Draconis. It can be found in the sky by tracing a line from Polaris to the furthest "dipper" star. The next star over from the alpha star Thuban in the constellation. Contains the first planet (8.8 MJ) discovered orbiting a giant star (12 RS, 1.8 MS), Hypatia, proving planets at Earth-like distances can survive the evolution of their stars to giant phase. It is in an extremely eccentric orbit at 1.5 AU (0.7, 0.34-2.17 AU), which aided its detection as giant stars have pulsations which can mimic the presence of a planet. The habitable zone starts at 6.8 AU, so this planet is well within it during its entire orbit. Its radial velocity effects are only observable when it is at its nearest to the star. One of the first 20 exoplanet systems allowed to be given common names by the IAU. The planet is named after a Neo-Platonic Greek astronomer.
  • GQ Lupi System - A T-Tauri K-Class star that may have a massive planet with a period of about 1200 years that might be the first planet imaged.
  • HD 330075 System - A cloudless blue jovian around an orange dwarf star.
  • HD 141937 System! - Template:HD 141937 System
  • HD 142415 System! - Template:HD 142415 System
  • Rho Coronae Borealis System - Has the first planet discovered closer than its star's habitability zone but not a Hot Jupiter or an Eccentric Giant. This planet was the first detected by the AFOE team. A dust disk was detected the same year as the planet, making it the first system observed to have both.
  • XO-1 System -
  • HD 142022 System! - Multiple star system with a planet.
  • 14 Herculis System -
  • HD 147506 System - (aka HAT-P-2) Hat-P-2b (aka HD 147506b) is the most massive measured exoplanet discovered that is clearly not a Brown Dwarf and the first transiting Hot Super Planet discovered. It is the first known transiting planet with a significantly eccentric orbit (2.8 to 9.3 million miles) and experiences significant seasons. It briefly held the record of furthest out transiting planet. It takes about a day to heat up and 4-5 days to cool down. Spitzer can measure different depths with different infrared wavelengths. Its temperature was mapped out. Its daytime is as high as 2400K, while its night is 1200K. It would have winds blowing thousands of miles per hour.
  • HD 147513 System! - A jovian and white dwarf around a yellow dwarf.
  • HD 149026 System - Ogma (HD 149026) is a yellow sub-giant star with the first known Saturn mass transiting planet, Smertrios. Also the first planet found with a dense core, leading credence to the core-accretion theory. Sometimes called a Super-Neptune, though it is not known if its core is rocky or icy. Also the first TEP discovered smaller than Jupiter. It was revealed to be as black as coal, twice as hot as any other known exoplanet, and hotter than some stars. One of the first 20 exoplanet systems allowed to be given common names by the IAU. The star is named after a Celtic god of eloquence, writing, and great physical strength, while the planet was named after a Gallic deity of war.
  • HD 150706 System - Template:HD 150706 System
  • HD 149143 System! - Template:HD 149143 System
  • HD 154345 System - Closest solar system analog to date. Contains a Jupiter like planet at Jupiter like distances 4.18 AU in a circular orbit with no known giant planets orbiting inside it. The star is dimmer than the Sun and habitable region at Venus like distances.
  • HD 155358 System - The extrasolar system with the lowest metalicity host star. Its two known Jovian planets were discovered recently and challenged planetary formation theorists. The two planets interact gravitationally with each other and are on opposite sides of the star's habitable zone.
  • HD 154857 System - Template:HD 154857 System
  • Gliese 674 System - CD-46°11540 is most commonly known as Gliese 674 and informally Proxima Arae. It is the nearest red dwarf known to have a planet and was the second nearest known exoplanet to the Sun when discovered. The star is type M3 V and is about 35% as massive and 42% as wide as the Sun and believed to be 550 million years old. It was once classed as an orange dwarf and a possible sub-dwarf. It was discovered by John Tome at Cordoba in Argentina. The planet is a Hot Neptunian in a tight orbit that has a similar eccentricity as Mercury. It's about 70% the mass of Neptune and 12 times that of Earth. It is unclear what its nature would be. It orbits at 0.04 AU, which is closer than the habitable zone, which is 0.13 to 0.15 AU.
  • HD 159868 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • Mu Arae System - Cervantes (Mu Arae) is a 6th magnitude Sunlike star close to becoming a Sub-Giant located 50 ly with four known planets. At first believed to be a system dominated by orbit crossing eccentric Super Jupiters. Instead, three Jovians orbit in roughly circular orbits at Earth-like (Rocinante, d), Mars-like (Quixote, b, in habitable zone), and Jupiter-like (Sancho, e) distances in addition to an inner (Dulcinea, c) Hot Neptune. Planet c was one of three Hot Neptunes or Hot Super Earths discovered around the same time. It was the first one announced, but it was still under scientific review at the time, so there remains controversy on what the actual first planet discovered of this class is. Initially thought to likely to be rocky because it had 2 known neighboring gas giants which may have stunted its growth. The characteristics of the planets in this system changed greatly as new planets were discovered, and included a re-ordering of their designations. Initially, the first planet b was thought to be highly eccentric. An outer planet was then detected, at the time dubbed "c" (though a full period hadn't yet been observed), and was thought to have an extremely high eccentricity so that the orbits of the two planets would cross. An innermost third planet then dubbed "d" was then detected. A new fit for the data then emerged, and it was found that the outermost planet was actually much less eccentric, and that there was a planet interior to planet b with almost half its period. The eccentricity of b was also reduced so that no planet criss-crossed another's anymore. It was decided to redesignate the planets in order of characterizations instead of by discovery, so the innermost Neptunian planet was re-dubbed "c" and the planets just interior and exterior to planet "b" were re-dubbed "d" and "e". The system became the second known 4-planet system. The innermost two Jovians are close enough so that they're unstable over short periods of time. If they were actually in 1:2 resonance, which almost fits the data, they would be much more stable. One of the first 20 exoplanet systems allowed to be given common names by the IAU. Star is named after the author of Il Ingenioso Hildalgo Don Quixote de la Mancha and the planets after its characters, Quijote (main character), Dulcinea (love interest), Rocinante (horse), and Sancho (squire).
  • OGLE-2005-BLG-071L System! - Template:OGLE-2005-BLG-071L System
  • HD 162020 System! - Template:HD 162020 System
  • OGLE-TR-10 System - Contains a bloated Hot Jupiter expected to be losing its atmosphere. Noted for its similarity to the first transiting exoplanet. Thought to not be so bloated, but then confirmed to really be bloated. Found to have the lowest measured surface gravity of any of the transiting exoplanets, considerably less than Earth. 5th confirmed OGLE planet. The first star observed to experience a stellar flare during the transit of one of its planets. The star is suggested to be active and have a high x-ray luminosity.
  • GSC 03089-00929 System! - Has planet TrES-3, the most massive transiting Very Hot Jupiter planet. Planet has one of the first two ground-detected atmospheres. A large ground-based telescope method of observation was pioneered on this planet.
  • OGLE-2005-BLG-390L System - Has first discovered Icy Super Earth, which was detected via Micro-lensing tens of thousands of light years away and was the smallest known exoplanet around a normal star at the time.
  • OGLE-TR-56 System - Contains first planet discovered by transit and later confirmed by Dopplar Spectroscopy (rather than the other way around). The first OGLE planet confirmed with the Dopplar method. It is 6000 ly away, 10 times as far as any previous known planet, in a different arm of the galaxy. Also the first Very Hot Jupiter and the first non-inflated Hot Jupiter discovered. It may meet its doom in less than a million years. Planet has one of the first two ground-detected atmospheres. Has an atmosphere hotter than any other measured so far. Unlike other hot Jupiters observed, it is way too hot for clouds of silicon or iron to form which would keep it dark.
  • SWEEPS-04 System! - Hot Super Jovian detected 8500 parsecs away in the galactic bulge. One of only 2 transit candidates bright enough to be confirmed with radial velocity technique.
  • SWEEPS-11 System! - Super Very Hot Jovian detected 8500 parsecs away in the galactic bulge. One of only 2 transit candidates bright enough to be confirmed with radial velocity technique.
  • HD 164922 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • OGLE-2003-BLG-235L System - A red dwarf around which the first planet discovered through microlensing was detected in 2004, shattering planetary distance records. It took a few years to actually image the star itself (by Hubble).
  • OGLE-2005-BLG-169L System - Contains the second discovered icy Super-Earth or Neptunian. This planet was detected via the Microlense technique.
  • HD 168443 System - Contains the first planet discovered whose minimum mass was near the planet/brown dwarf boundary which orbits at a asteroid belt-like distance. Also contains a second huge planet at least 7 times as massive as Jupiter orbiting at Mercury-like distances.
  • HD 168746 System - A dark Hot Jupiter around an yellow dwarf star.
  • HD 169830 System - Bright star with two eccentric planets known in 2003. One is likely too hot to have any clouds, while the other one is likely to sport white water cloud bands.
  • HD 170469 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • SCR 1845-6357 System - A Red Dwarf star only 11 ly away with a T-Type Brown Dwarf.
  • HD 175541 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • GSC 02652-01324 System - Contains the first transiting exoplanet discovered with the TrES amateur equipment and second transiting exoplanet close enough to have its atmosphere studied. It is the first Hot Jupiter that had the expected radius. Was the one of the first two exoplanets to have its light separated from its host star. Has a cloud or torus of particles around it. Tidal heating is predicted due to its eccentric orbit, but this has not seem to have inflated its radius.
  • HD 177830 System - Template:HD 177830 System
  • GSC 03549-02811 System! - Contains TrES-2, which was the most massive nearby transiting planet until the discovery of Hat-P-2 b. It has a large radius for a planet not considered inflated. A large ground-based telescope method of observation was pioneered on this planet. Since its in Keplar's field of view, it was observed by it as a test subject and dubbed Kepler1b. A second planet is possibly responsible for fluctuations in the first's inclination. Kepler determined that it is the darkest known planet, blacker than coal, due to its extremely low dimming and brightening detected during transits. It would appear black except for some faint red tinge. This conflicts with current theories, which thought that a Hot Jupiter could only get as dark as Mercury. It appears that the planet is too hot for reflective clouds to form and instead its atmosphere contains light-absorbing chemicals. An off-the-cuff nickname Erebus (Greek god of darkness) has been suggested. It was also the first planet whose phases have been detected.
  • HD 178911 System! - A cloudless blue jovian around one of the two yellow giant star in a binary system.
  • HD 179949 System - Contains the first planet discovered by the Anglo-Australian Planet Search, which is also the first exoplanet whose Magnetic Field was observed. This Hot Jupiter is about the same mass as Jupiter and orbits once every thre days. It was found to have supersonic winds that caused the night side (not tidally locked) to be as hot as the day side. This system is also the first observed to have planet-induced stellar X-ray activity. Magnetic interaction causes a bright spot on its star at 30 degrees latitude.
  • HD 183263 System! - Template:HD 183263 System
  • HD 231701 System! - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 185269 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • 16 Cygni System - A hierarchical triple star system. Has one of the first highly eccentric Jovians discovered around the "outer" star B. Recent calculations show that a short period planet could exist around the same star, but none up to as large as Neptune could exist elsewhere. Kepler has performed astroseismology on stars A and B.
  • HD 187123 System - Template loop detected: Template:HD 187123 System
  • HD 187085 System - Template:HD 187085 System
  • HD 188015 System - A white Water Cloud Jovian around an yellow sub-giant star at near Earth-like temperatures.
  • HD 189733 System - A binary star in Velpulca (the "little fox") consisting of an Orange Dwarf star A and a Red Dwarf B (discovered shortly after planet Ab found and orbiting perpendicular to that planet's orbit and later detected in x-rays) orbiting 216 AU away. Planet Ab (the first nearby Very Hot Jupiter, originally thought to be inflated, is 13% larger and more massive than Jupiter) is the nearest transiting Hot Jupiter (62.9 ly). This is the first exoplanet to have its temperature mapped and was nicknamed Bull's Eye for its hot spot that is significantly offset from the starward pole. 5 years later, it later became the first world to have its thermal emissions mapped in both longtitude and latitude, confirming the hot spot was near the equator. Fast winds are thought to make the temperature of the eternal day and night sides nearly identical, which were later measured to be 2km/s when the planet became the first to have its wind and weather patterns mapped. It is also the first exoplanet for which scattered light in the upper atmosphere has been detected and the second exoplanet with water detected and first with Methane and then Carbon Dioxide detected. It later was the first exoplanet whose gasses were detected from Earth-based telescopes. It was also found to spin up its star and magnetically interact with it, causing stellar storms. Massive X-class solar flares blast off much of the planet's atmosphere and may render it undetectable. Hubble found that its atmosphere was a uniform blue haze. Blue was detected by determining which wavelengths were blocked during a transit. It was also found to rain molten glass, sideways, with 7000 km/hr winds and 1000C. It became the first exoplanet whose transit was detected in X-Rays, which revealed it had a very large extended outer atmosphere, which is losing material rapidly. The star is much more magnetically active for its age, possibly due to the planet's presence. There is speculation that it could have large planet-wide auroras. It's already-known mass was measured using an atmospheric pressure method to test its viability. By studying sodium spectra, it was determined that it gets hotter with altitude.
  • HD 190228 System! - Template:HD 190228 System
  • Gliese 777 System - Outer planet of the primary star was initially believed to be a Jupiter analog, but later found to be eccentric (its apastron is at Jupiter-like distance). Its second planet was the fourth Neptunian discovered and was announced with four other "second" planets in 2005.
  • HD 190647 System! - Template:HD 190647 System
  • HD 192263 System - An early detected cloudless blue Jovian around an orange dwarf star.
  • HD 192699 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 195019 System! - A cloudless blue jovian around an yellow dwarf star.
  • WASP-2 System - Contains second planet discovered by WASP program. This planet is a rather heavy transiting planet, has a large rocky core, and conforms to present models (in contrast to WASP-1). One of the 6 out of 27 planets analyzed by the WASP team found to orbit backwards around its star in 2010. Shows signs of atmospheric blow-off.
  • HD 196050 System! - Multiple star system with a planet.
  • HD 196885 System - Template:HD 196885 System
  • HD 202206 System - System with an eccentric brown-dwarf at Venus-like distances and an even further out eccentric Jovian found in 2004.
  • HD 208487 System - Template:HD 208487 System
  • HD 209458 System - Has first discovered transiting planet which was nicknamed Osiris due to the (first detected) comet-like tail detected and the first exoplanet around a normal star to have its mass directly measured. Also the first Inflated Hot Jupiter found. The planet may be losing its outer atmosphere, or magnetism may prevent the ions from escaping. They detected water in its atmosphere (they had failed earlier), the first time this has been done for any exoplanet. 2nd Exoplanet with detected organic compounds; like HD 189733b, it has water and carbon dioxide, but it has a lot more Methane. Was one of 2 planets to have light directly taken and thus their temperatures read (over 1000K). Tracking carbon molecules with dopplar spectrometry caused it to be the first exoplanet detected to have winds, which are raging at 5,000 to 10,000 km/h. This is believed to cause hotspots to appear at terminators rather than at the star-ward facing point. Had one of the strongest water detection of the 5 exoplanets contrasted by Hubble in 2013, though still less intense than expected, probably due to dust clouds or a haze blocking its detection.
  • HD 210277 System - Template:HD 210277 System
  • Gliese 849 System - BD-05°5715 is best known as Gliese 849 and also known as LHS 517. Nearby red dwarf star system in Aquarius with a planet. Contains the first long period exoplanet found around a red dwarf star using dopplar spectrometry. Also only the second Jupiter mass planet around a star less massive than half the Sun. Also the first confirmed Jupiter-sized planet at Neptune-like temperatures. There is evidense for a second planet.
  • HD 210702 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.
  • HD 212301 System! - Template:HD 212301 System
  • HD 213240 System! - Multiple star system with a planet.
  • Gliese 876 System - Ross 780 is also known as Gl 876 and the flare star IL Aquarii. Very nearby quadruple planet system and the first Red Dwarf found to have planets. The innermost planet (d, Hot Superterran, rocky-water) was the first found rocky planet around a normal star (the first true Super-Earth, at epistellar distances). The outer three planets c (Warm Saturnian), b (Warm Jovian), and e (Cold Neptunian) are in 1:2:4 (30d/60d/120d) resonance (the exoplanet resonance and first triple-resonant planets discovered). The outermost planet has a Mercury-like orbit. Planet b is second discovered by ELODIE after 51 Peg b and the second to have its mass exactly measured and the first to have done so by astrometry.
  • Tau1 Gruis System - Template:Tau1 Gruis System
  • Rho Indi System - Eccentric water cloud giant around a yellow sub-giant star.
  • HD 216770 System - Template:HD 216770 System
  • 51 Pegasi System - The star called 51 Pegasus is now known as Helvetios. Contains the first exo-planet around a normal star discovered and the first "Hot Jupiter" found, which is nicknamed "Bellerophon", and now called Dimidium. Star is about 50 ly located in the square of Pegasus, a G5 star somewhat larger and more massive than the Sun. The planet's discovery was incompatible with planetary system formation models, so they were tweaked to allow for planetary migration. It was also initially thought to be an anomaly or the stripped down core of a brown dwarf. Found to have supersonic winds that caused the eternal night-side hemisphere to be as hot as the day-side one. During its 20th anniversary, this planet became the first one's whose reflected visible light was detected. The technique involved looking at a star's visible spectrum, and then detecting a faint reflection of this spectra. Its actual mass (0.46 MJ) and inclination (9deg) were obtained as a result. The planet seems to have a larger radius and bright surface, rather typical for hot jupiters. One of the first 20 exoplanet systems allowed to be given common names by the IAU. The star's name is Latin for a Celtic tribe that lived in Switzerland (the place where its planet was discovered) during the middle ages. The planet's name is Latin for "half" due to the fact its minimum mass is half as massive as Jupiter's.
  • ADS 16402 System - (aka HAT-P-1) A stellar binary believed to contain the planet with the biggest known diameter and the least dense. This would have been only the second planet with such a low density. Later measurements showed it wasn't that inflated, and has the expected radius for a highly irradiated core-less Hot Jupiter.
  • HD 217107 System - Contains the first discovered moderately eccentric Hot Jupiter. Its outer planet was suspected when the inner one was discovered due to its eccentricity (0.13) and confirmed with four other new multiplanet systems in 2005. The Outer planet c is highly eccentric and skirts the outer edge of the habitable zone.
  • Psi1 Aquarii System - A dark hot jupiter around an orange giant star.
  • HD 219828 System - Template:HD 219828 System
  • HD 221287 System! - Template:HD 221287 System
  • Gamma Cephei System - Jovian and red dwarf around an orange sub-giant.
  • HD 222582 System - Multiple star system with a planet.
  • HD 224693 System - System that includes one of the 28 planets announced at the May 2007 AAS media briefing.

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.